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Introduction
● Renewables are introducing new uncertainties into the grid that 

cannot be handled on the supply side.

● Demand response (shaping energy consumption of consumers) is 
necessary to mitigate uncertainty introduced by renewables.

● Thermal loads (ACs/heaters) comprise 50% of the energy 
consumption in homes in the US, and are an attractive option for 
demand response.

● Aggregators/load serving entities can pool a large number of 
homes and control their thermal loads to provide demand 
response services to the grid.

Source: Halder, Geng, Kumar and Xie, IEEE Trans. Power Syst., 2016.



Objective

Problem:
Optimizing electricity consumption and electricity costs for a large
collection of homes managed by an aggregator/load serving entity
by controlling thermal inertial loads.

Privacy Constraints:
● Aggregator has no access to the state variables (temperatures 

or power consumption) or the thermal models (building 
characteristics) of individual homes.

● Aggregator must guarantee consumer comfort constraints 
(temperature differential that the consumer is willing to 
tolerate).

Source: Halder, Geng, Kumar and Xie, IEEE Trans. Power Syst., 2016.



Current State-of-the-Art: Model-based Scheme
Power Consumption Optimization:
● Compute ON-OFF schedules for ACs as

argmin
𝜎𝜎1,..,𝜎𝜎𝑁𝑁∈ 0,1 𝑁𝑁
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Subject to: Building thermal model, and comfort constraints
● Pre-cool homes to decrease power consumption 

during peak pricing periods (when demand response is 
required).

Issues:
● Large-scale integer program (~2.8 × 106variables for

N=1000 homes!) – can solve using LP relaxation
● Not privacy-preserving: Need thermal parameters of

homes (𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖) – can use joint distributions, but
characterizing these quantities is hard, and requires
knowledge of the layout/size/characteristics of homes.

Building thermal model𝜃̇𝜃𝑖𝑖 = −𝛼𝛼𝑖𝑖 𝜃𝜃𝑖𝑖 𝑡𝑡 − 𝜃𝜃𝑎𝑎 𝑡𝑡 − 𝛽𝛽𝑖𝑖𝑃𝑃𝜎𝜎𝑖𝑖 𝑡𝑡 ,

𝜎𝜎𝑖𝑖 𝑡𝑡 = �
1, 𝜃𝜃𝑖𝑖 𝑡𝑡 = 𝑈𝑈𝑖𝑖𝑖
0, 𝜃𝜃𝑖𝑖 𝑡𝑡 = 𝐿𝐿𝑖𝑖𝑖

𝜎𝜎𝑖𝑖 𝑡𝑡− , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.
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Source: Halder, Geng, Kumar and Xie, IEEE Trans. Power Syst., 2016.



Privacy-Preserving Framework
Step 1: Neural Network based Price Forecasting

Use Long-Short Term Memory (LSTM) neural networks to predict 
periods of peak electricity pricing

LSTM for 
hourly 

electricity price 
forecasting

Inputs: Historical hourly day-ahead and real-time electricity prices, weather 
data (temperatures, wind speed,  humidity), generation and loads.

Output: Hourly price forecasts.

Sivaranjani S., P. R. Kumar, and Le Xie, “A Privacy Preserving Model-Free Optimization and Control Framework for 
Demand Response from Residential Thermal Loads”, IEEE Conference on Decision and Control (CDC), 2020 (Invited).
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Step 2: Model-free Optimization

Key Idea:
Average duty cycle 𝑆̂𝑆𝑂𝑂𝑂𝑂𝑂𝑂

≈ peak price period

Step 3: Private control 
implementation

Private Dynamics :

𝜃̇𝜃𝑖𝑖 = −𝛼𝛼𝑖𝑖 𝜃𝜃𝑖𝑖 𝑡𝑡 − 𝜃𝜃𝑎𝑎 𝑡𝑡 − 𝛽𝛽𝑖𝑖𝑃𝑃𝜎𝜎𝑖𝑖 𝑡𝑡 ,

Binary Control Signal:

(broadcast to all homes by the aggregator and 
privately implemented at each home)

𝑐𝑐 𝑡𝑡 = �
1, 𝜃𝜃𝑖𝑖 𝑡𝑡 = 𝑈𝑈𝑖𝑖𝑖 OR 𝑡𝑡 ∈ 𝑃𝑃𝑃𝑃 OR 𝑡𝑡 ∈ 𝐶𝐶𝐶𝐶

0, 𝜃𝜃𝑖𝑖 𝑡𝑡 = 𝐿𝐿𝑖𝑖𝑖 OR 𝑡𝑡 ∈ 𝑆̂𝑆𝑂𝑂𝑂𝑂𝑂𝑂

Note: Dynamics need not even be known to 
the home.

Privacy-Preserving Framework

Sivaranjani S., P. R. Kumar, and Le Xie, “A Privacy Preserving Model-Free Optimization and Control Framework for 
Demand Response from Residential Thermal Loads”, IEEE Conference on Decision and Control (CDC), 2020 (Invited).



Case Study: Houston (N=500 homes)

Average uncontrolled power = 25.68 MW
Average Power (Model-based scheme –

Halder et. al., IEEE Trans. Power Syst., 2017) 
= 22.4 MW, Savings= $3787

Average Power (Privacy-preserving scheme) 
= 23 MW, Savings= $3597

Sivaranjani S., P. R. Kumar, and Le Xie, “A Privacy Preserving Model-Free Optimization and Control Framework for 
Demand Response from Residential Thermal Loads”, IEEE Conference on Decision and Control (CDC), 2020 (Invited).

Can achieve significant 
reduction in power 

consumption and electricity 
costs for consumers, while 

maintaining complete privacy.



Conclusions and Future Work

● Framework for privacy-preserving demand response from residential thermal loads based on 
electricity price forecasting.

● Demand response framework will help promote renewable integration by mitigating uncertainties in 
grids with high penetration of renewables.

● Framework will also decrease energy costs for consumers in a non-intrusive and privacy-preserving 
manner. 

● Future work: commercial/pilot-scale realization in collaboration with aggregators/industry partners 
in the Houston area.


	A Privacy-Preserving Framework�for Demand Response from�Residential Thermal Loads
	Introduction
	Objective
	Current State-of-the-Art: Model-based Scheme
	Privacy-Preserving Framework
	Privacy-Preserving Framework
	Case Study: Houston (N=500 homes)
	Conclusions and Future Work

