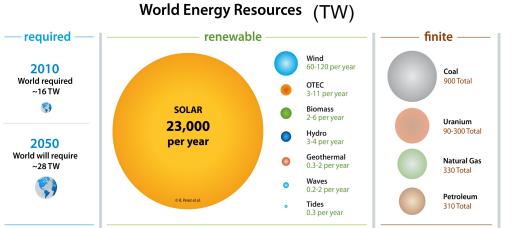
Pathway Towards Low-Cost, High-Efficiency Solar Cells by Dynamic Hydride Vapor Phase Epitaxy

Elisabeth L. McClure

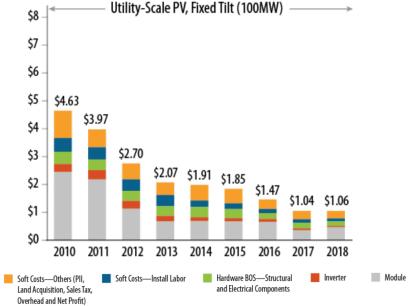
John Simon, Kevin L. Schulte, Wondwosen Metaferia, Aaron J. Ptak

National Renewable Energy Laboratory

Contact: Elisabeth.McClure1@gmail.com


Renewable Energy https://youtu.be/a_gujmtlbzA

For attendees: during review of the presentation, please direct comments to the presenter by using "@PresenterName". This will ensure they receive your comments and questions directly.

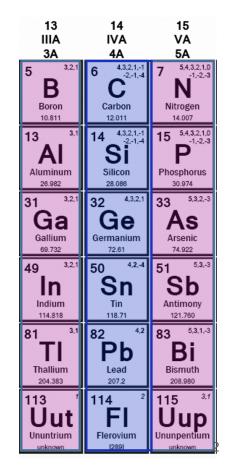


Introduction: Why Solar?

year – three orders of magnitude more than the projected global consumption for 2050

23,000 TW are incident on the earth from the sun per

Meanwhile, the cost of solar panels has substantially decreased in the last decade



III-V Materials for Solar Applications

_ _ _ _

	Silicon vs.	<u>III-Vs</u>
Power conversion efficiency	18-21%	26-34%
Power output per weight	260 W/kg	1100 W/kg
Power output per area	200 W/m ²	300 W/m ²
Flexibility	Rigid	Rigid or flexible
Market share	95%	<1%
Cost	<\$1/W	\$61/W
Source: John Geisz		

Source: NASA

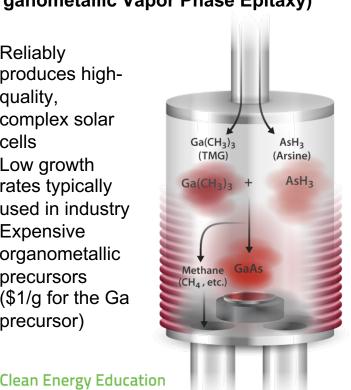
Source: TITAN

III-V Materials for Solar Applications

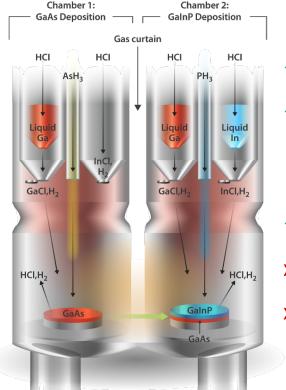
	Silicon vs.	<u>III-Vs</u>
Power conversion efficiency	18-21%	26-34%
Power output per weight	260 W/kg	1100 W/kg
Power output per area	200 W/m ²	300 W/m ²
Flexibility	Rigid	Rigid or flexible
Market share	95%	<1%
Cost	<\$1/W	\$61/W

Enabling Applications

Eource: MicroLink Devices


Solar cells can be made from a variety of materials including silicon and III-Vs. III-V materials have higher solar cell performance than silicon, but are more Clean Energy Education & Empowerment (C3E) Clean Energy Education Clean Energy Education Clean Energy Education Clean Energy Education

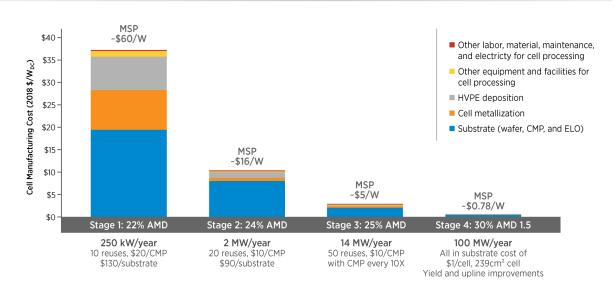
III-V Epitaxy Methods


The Incumbent Method (Organometallic Vapor Phase Epitaxy)

- Reliably produces highquality, complex solar cells
- Low growth Х rates typically used in industry
- Expensive Х organometallic precursors (\$1/g for the Ga precursor)

& Empowerment (C3E)

The Alternative Method (Dynamic Hydride Vapor Phase Epitaxy)



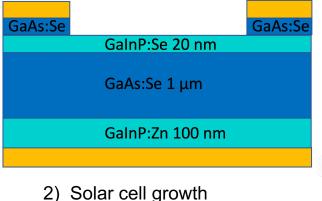
- Fast growth rates > 0.5 mm/h
- Lower-cost precursors (\$0.21/g for the elemental Ga precursor)
- \checkmark More efficient use of precursors
- Only research Х scale so far
- Uses flammable Χ hydrogen gas

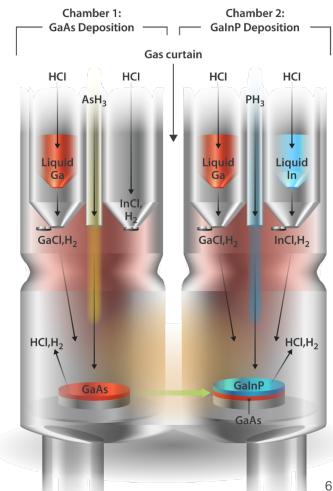
Objective

Our objective is to maintain III-V solar cells with very high efficiency while exploring methods to reduce the cost

This poster discusses the enabling role of nitrogen carrier gas to reduce HVPE deposition costs

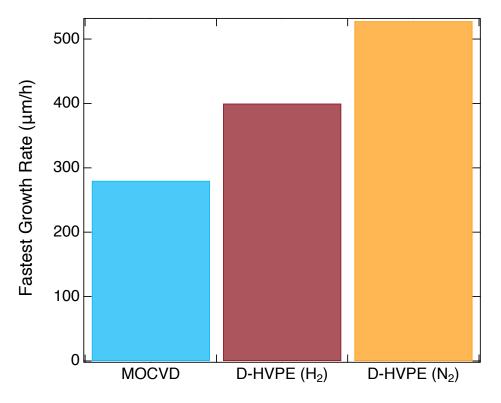
The Roadmap to Low-Cost, High-Output III-V Solar Cells




Methods: D-HVPE Growth

We grew GaAs test structures to determine the growth rate with a nitrogen carrier gas, which is safer and cheaper than hydrogen carrier gas that is typically used

We then developed solar cells to confirm that they still maintain high efficiency at high growth rates with nitrogen

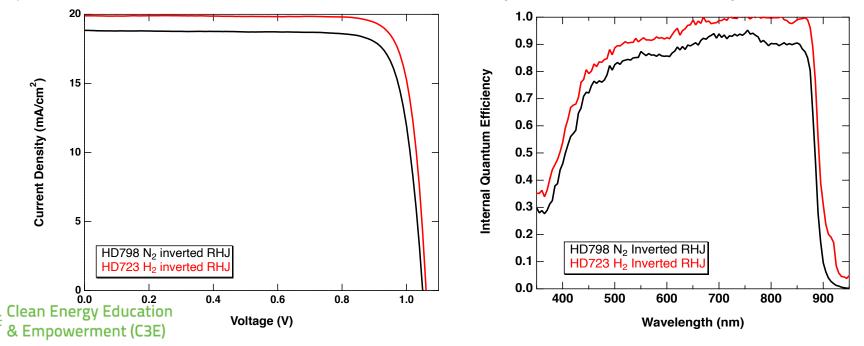


Results: Growth Rate Enhancement

We used the maximum AsH₃ flow and increased the GaCl flow to compare the influence of carrier gas on growth rate

We observed a growth rate of **528 µm/h using nitrogen carrier gas** and 400 µm/h using hydrogen carrier gas

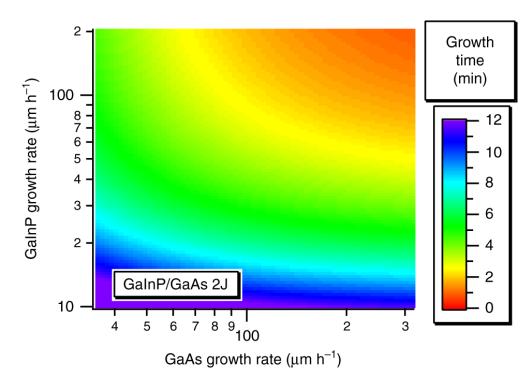
This growth rate enhancement could improve throughput in industrial-scale reactors, while utilizing a carrier gas that is **cheaper and safer** than the current standard



Results: Solar Cell Performance

Estimated 24% power conversion efficiency with an antireflection coating at a growth rate of 30 µm/h

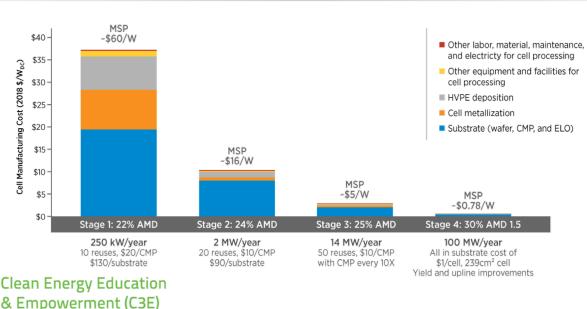
The open circuit voltage (which predicts material quality) is within 20 mV of the hydrogen baseline with almost no optimization. The difference in the short-circuit current density is due to a difference in layer thickness.

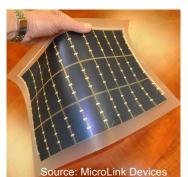


Conclusions

Higher growth rate can lead to lower time to grow a single-junction or multijunction III-V solar cell

We found that using nitrogen carrier gas improves the growth rate compared to hydrogen carrier gas, and has additional benefits such as being cheaper and safer


Improvements in throughput decrease the cost associated with epitaxy


Impact

This work combined with continued scaling of D-HVPE reactors and techniques to reduce the cost of metallization and substrates will enable a pathway for III-V solar cells in many future technologies like **efficient, light-weight solar modules on cars** or **flexible and portable solar mats, tiles, and backpacks**

The Roadmap to Low-Cost, High-Output III-V Solar Cells

Acknowledgments

Special thanks to:

- David Guiling
- Evan Wong
- Dennice Roberts
- Allison Perna
- John Geisz

www.nrel.gov

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by DOE's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office (SETO) Agreement Number 35365. The views expressed in this presentation do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

References

Slide 1: Solar Installed System Cost Analysis, NREL, 2018

Slide 5: K.A.W. Horowitz *et al.*, "Techno-Economic Analysis and Cost Reduction Roadmap for III-V Solar Cells," National Renewable Energy Lab (NREL): Golden, CO, USA, 2018.

Slide 7: R. Lang *et al.* "MOVPE Growth of GaAs with Growth Rates up to 280 µm/h." *Journal of Crystal Growth* 125601, 2020.

E.L. McClure *et al.* "GaAs growth rates of 528 µ m/h using dynamic-hydride vapor phase epitaxy with a nitrogen carrier gas." *Applied Physics Letters* 116.18 182102, 2020.

Slide 9: W. Metaferia *et al.* "Gallium arsenide solar cells grown at rates exceeding 300 µm h- 1 by hydride vapor phase epitaxy." *Nature communications* 10.1 1-8, 2019.

