Cellulosic Biofuel Supply Chain: A Nationwide Analysis

Tasmin Hossain

Advisor: Dr. Daniela Jones

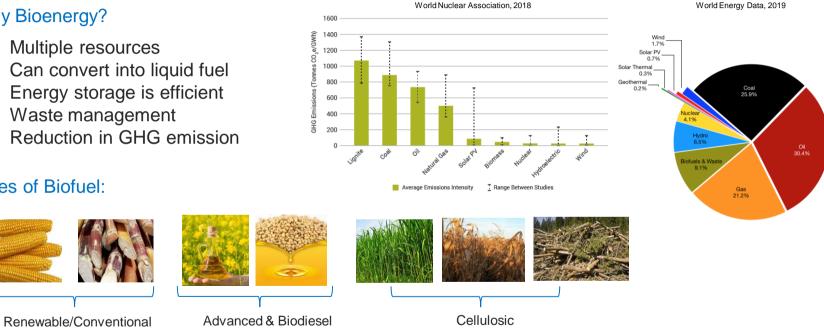
BioAg-Logistics Lab, Biological & Agricultural Engineering, North Carolina State University

Contact: thossai@ncsu.edu

Renewable Energy

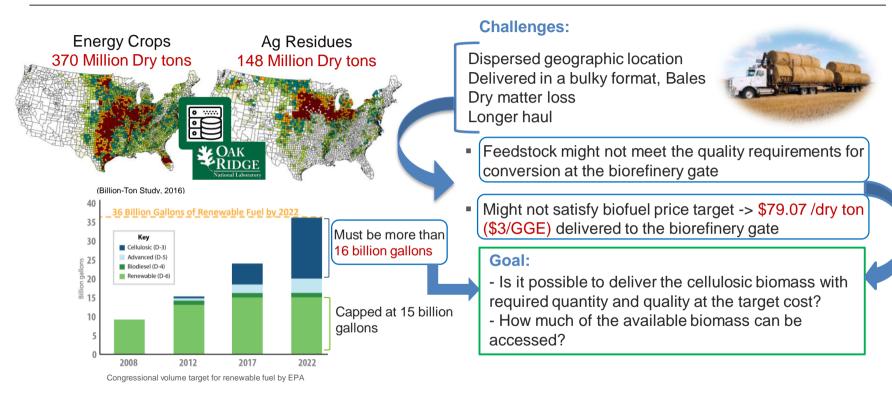
You Tube Link for Introduction

For attendees: during review of the presentation, please direct comments to the presenter by using "@PresenterName". This will ensure they receive your comments and questions directly.

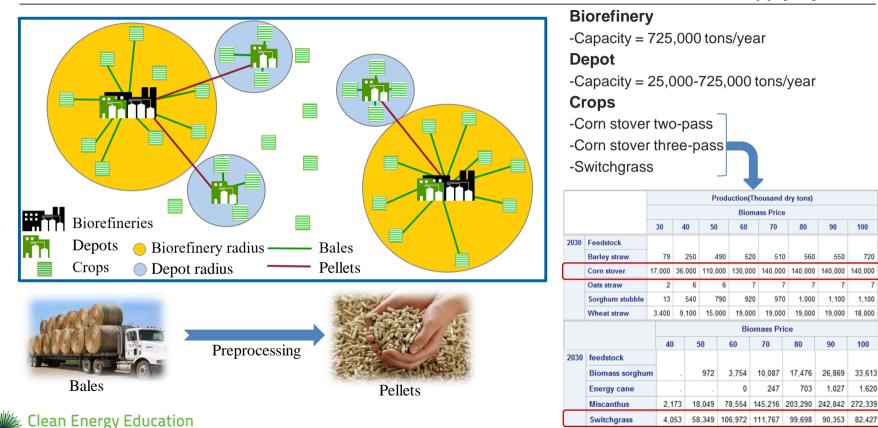


Introduction

Why Bioenergy?


- Multiple resources •
- Can convert into liquid fuel •
- Energy storage is efficient ۰
- Waste management •
- Reduction in GHG emission .

Types of Biofuel:


Objective

Methods

& Empowerment (C3E)

Advanced Feedstock Supply System

Biomass Price

520

7

920

19,000

70

510

970

19,000

Biomass Price

70

10.087

247

80

560

1,000

19,000

80

17,476

703

99,698 90,353

100

720

1,100

18,000

100

33.613

1,620

82,427

550

1,100

19,000

90

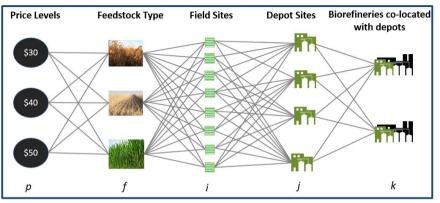
26,869

1,027

Methods

Modeling Approach

-Mixed Integer Linear Programming (MILP) model


-Optimization —> Facility location and assignment problem

-Where? Biorefinery and Depot location

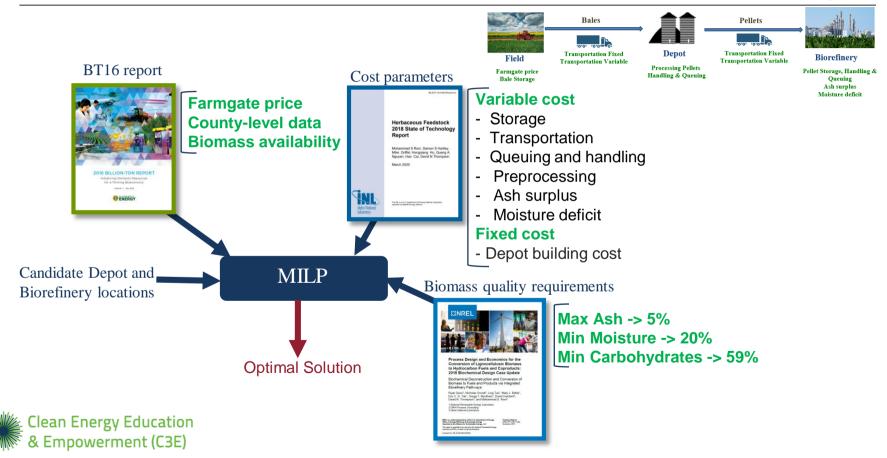
-Who supplies who? Field-Depot and Depot-Biorefinery assignment

-How much? Feedstock supplied to Depots and Biorefineries

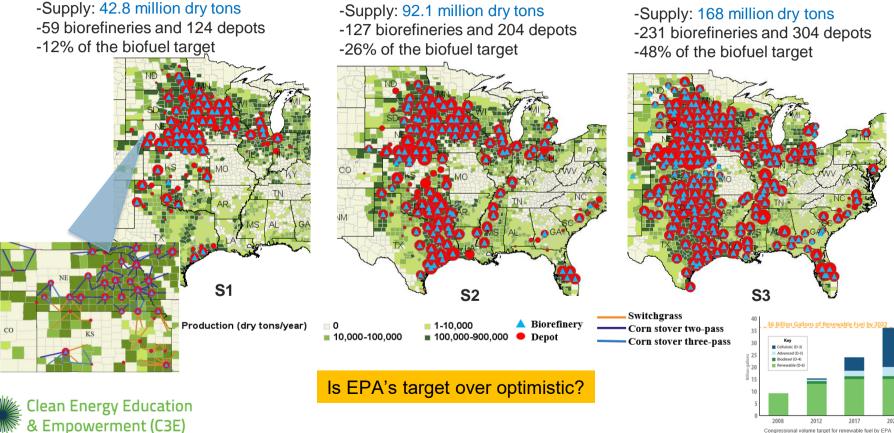
-At what cost? Feedstock purchase price and logistics cost

Biomass flow

Objective: Maximize biomass supply to biorefinery


Constraints:

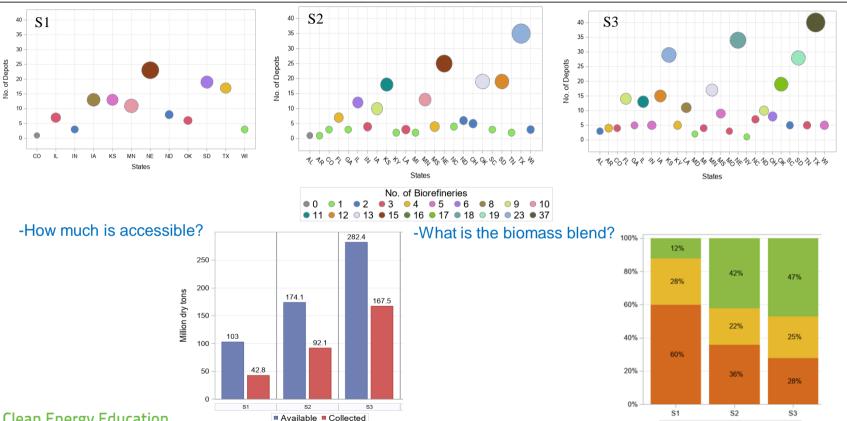
- Maximum distance between field-depot: 80 miles
- Maximum distance between depot-biorefinery: 400 miles
- Depot utilization: 90%
- Biorefinery capacity: 725,000 dry tons
- Carbohydrate quality requirement for conversion
- Cost target: \$79.07 /dry ton
- Flow balance
- Integer and binary decision variable constraints


Methods

Model Inputs

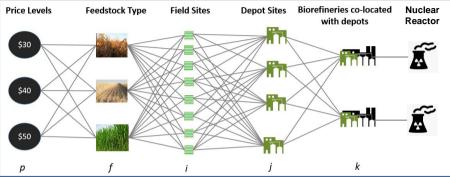
Results

Biofuel Target: 16 Billion Gallon ->357 million dry tons in 2022 Scenario-> S1:2022 S2:2030 S3:2040 Cost target: 79.07\$/dry ton



Congressional volume target for renewable fuel by EPA

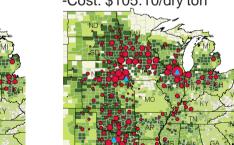
Results


Biofuel Target: 16 Billion Gallon ->357 million dry tons in 2022 Scenario-> S1:2022 S2:2030 S3:2040 Cost target: 79.07\$/dry ton

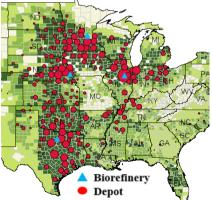
Feedstock CS2P CS3P SW

Clean Energy Education & Empowerment (C3E)

Results



Nuclear Biorefinery


- Capacity: 82 million tons/ year

-Supply: 164 million dry tons -2 biorefineries and 302 depots -Cost: \$109.95/dry ton

-Supply: 246 million dry tons -3 biorefineries and 394 depots -Cost: \$105.10/dry ton

-Supply: 328 million dry tons -4 biorefineries and 447depots -Cost: \$101.86/dry ton

Why?

-Increase of biofuel yield -Increase of biomass accessibility

- -Very large scale biorefineries
- -To meet the target goal

Conclusions

- The requirement of cellulosic biofuel by 2022 with the mandated cost target, might be over optimistic.
- Around 50% of biomass remain inaccessible.
- Updated mandate required with higher cost target.
- Switchgrass is a potential biomass for future.
- Incentivize new concepts for higher biofuel yield.
- Combining nuclear power to large scale biorefinery might be a solution.

Manuscript in Preparation: Tasmin Hossain¹, Daniela Jones^{1,2}, Damon Hartley², Mike Griffel², Yingqian Lin², Pralhad Burli², David N. Thompson², Matthew Langholtz³, Maggie Davis³, Craig Brandt³
¹ Biological & Agricultural Engineering, North Carolina State University, Raleigh, NC. ² Bioenergy Analysis, Idaho National Laboratory, Idaho Falls, ID. ³ Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN

Future work

- Incorporating existing road and rail networks.
- Simulation modeling to determine the medium-term decisions such as truck scheduling.
- Incorporate uncertainties of the biomass supply system (e.g. weather) in the model.
- Analyze nuclear biorefinery scenario with rail and barge transportation.
- Detailed analysis on the new concept of nuclear powered biorefinery.

References

- Davis, R. E., Grundl, N. J., Tao, L., Biddy, M. J., Tan, E. C., Beckham, G. T., ... & Roni, M. S. (2018). Process Design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels and coproducts: 2018 biochemical design case update; biochemical deconstruction and conversion of biomass to fuels and products via integrated biorefinery pathways (No. NREL/TP-5100-71949). National Renewable Energy Lab.(NREL), Golden, CO (United States)
- Roni, Mohammad Sadekuzzaman, et al. Herbaceous Feedstock 2019 State of Technology Report. No. INL/EXT-20-57182-Rev000. Idaho National Lab.(INL), Idaho Falls, ID (United States), 2020.
- Langholtz, Matthew H., Bryce J. Stokes, and Laurence M. Eaton. "2016 Billion-ton report: Advancing domestic resources for a thriving bioeconomy, Volume 1: Economic availability of feedstock." Oak Ridge National Laboratory, Oak Ridge, Tennessee, managed by UT-Battelle, LLC for the US Department of Energy 2016 (2016): 1-411.
- Bracmort, K. (2018). The Renewable Fuel Standard (RFS): An Overview. Washington, DC: Congressional Research Service.

Acknowledgments

- U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) Bioenergy Technology Office
- USDA Hatch Project
- Lincoln Groves, Manager, Analytical Education, SAS Global Academic Programs
- Mark Hartmann, SAS Instructor
- Tom Grant, Principal Analytical Training Consultant, SAS
- Imre Pólik, Senior Manager, Linear and Integer Optimization, SAS
- Rob Pratt, Senior R&D Manager, SAS
- Mohammad S. Roni, Idaho National Laboratory
- Charles Forsberg, Massachusetts Institute of Technology
- Bruce Dale, Michigan State University

