Development of a Platform for Expanding AUV exploRation to Longer ranges (PEARL)

Dr. Maha N. Haji PI: Prof. Olivier L. De Weck

Engineering Systems Laboratory, Department of Aeronautics and Astronautics,

Massachusetts Institute of Technology

Contact: mhaji@mit.edu

Renewable Energy

https://youtu.be/iYNBaOuZ8OM

For attendees: during review of the presentation, please direct comments to the presenter by using "@PresenterName". This will ensure they receive your comments and questions directly.

Introduction

- Challenges for Autonomous Underwater Vehicle (AUV)-based ocean exploration:
 - battery endurance, and
 - data transmission latency.
- Results in need for frequent recovery to recharge batteries and offload data, requiring a support vessel and crew, which can cost in excess of \$30,000 per day [1-2].
- Can we leverage new technology to reduce
 - operating costs \$/AUV mission hour, and
 - data latency?

[1] "MBARI—Rates for vessels, vehicles, MARS, labor, test tank," <u>http://www.mbari.org/at-sea/mars-ship-rates/</u>.

[2] Podder, et al., IEEE Int. Conf. Robot. Automat. 2004.

Traditional operations for recovering AUVs at sea.

The Future of Ocean Monitoring?

Visualizing of global coverage via new satellite constellations.

- Classic low-Earth orbit (LEO) satellite networks: Iridium, Globalstar,Orbcomm
 - Low transfer rates,
 - Limited coverage
- New low-Earth orbit (LEO) high-bandwidth satellite Mega constellations: Starlink, Project Kuiper
 - Global coverage.
 - Transfer rates of 50-500 Mbps
 - Online as early as 2022
- Could enable drastic changes in the way we do ocean science.
 - Higher resolution ocean measurements
 - Near-real-time data

Objective

- Goal: Extend the range and endurance of AUVs and allow for near-real-time data transmission by leveraging upcoming satellite mega constellations, thereby reducing operating costs via the Platform for Expanding AUV exploRation to Longer ranges (PEARL).
- PEARL will provide AUV recharging via renewable energy and data uplink via a new generation of high-bandwidth low-Earth orbit (LEO) satellite mega constellations [3].
- Past docking, power, and data transfer platforms for AUVs limited in mobility, power generation, and range of vehicles serviceable.
 - PEARL aims to overcome these limitations.

An inbound AUV can dock to PEARL, which simultaneously charges the vehicle using renewable solar energy, and offloads data via a high-bandwidth LEO satellite link, enabling the AUV to conduct longer-range missions and collect higher resolution ocean measurements.

[3] Foreman et al., AIAA SPACE and Astronautics Forum 2017.

PEARL Design Overview

Conceptual design of PEARL.

- PEARL consists of an upper floating platform and a lower damping plate, connected by a structural spar.
- Floating platform houses solar panels and a satellite terminal, and could be shaped like a hexagon to enable multiple servicing platforms to connect together for increased power and data transfer capabilities.
- Submerged damping plate reduces heave motion of the platform.

PEARL Ocean Prototype

- 1:2.5 Froude-scaled prototype of PEARL was developed for ocean testing.
- Goal: Investigate concepts energy harvesting, data collection, and data transmission.

Highly coupled design: energy generation

- Size and efficiency of the solar PV panels determines the amount of power that can be collected and stored onboard.
- Figure shows trade-off between size and efficiency of solar PV panels for different scenarios of AUVs charged per day.
- Trade-off results are for a baseline case with a servicing platform power consumption of 50W, AUV energy storage capacity of 1.9kWh, and an incident solar flux of 800W/m² at an average incidence angle of 55°, with typical electrical conversion inefficiencies and lifetime degradation. Appropriate depth of discharge values were chosen for the various battery chemistry to ensure a 10 year cycle life.

Clean Energy Education & Empowerment (C3E)

Highly coupled design: energy storage

- Battery chemistry dictates the recharge rates of AUVs, and number of recharge cycles to be supported.
- Figure shows trade-off between energy demand and mass of servicing platform for a variety of battery chemistries.
- Trade-off results are for a baseline case with a servicing platform power consumption of 50W, AUV energy storage capacity of 1.9kWh, and an incident solar flux of 800W/m² at an average incidence angle of 55°, with typical electrical conversion inefficiencies and lifetime degradation. Appropriate depth of discharge values were chosen for the various battery chemistry to ensure a 10 year cycle life.

Key function: recharging AUVs at sea

- Figure shows AUV charge level modeling.
- AUV Returns to platform for recharge @ 20% battery capacity
- Assumes:
 - 30 minute charging
 - 8 hour discharging (mission)
 - Linear charging and discharging
- AUV dormant during first 24 hours for platform charging.
- If platform battery levels are too low, AUV will be charged directly by solar panels.

Energy management is a key challenge

- Figure shows model the predicts platform charge levels.
- "D#" indicates day. "YY%" indicates amount of sunlight available (based on weather)
 - Solar panels charge platform (assume 20% loss)
 - When at 100% charge, solar panels disconnected
 - AUV charging discharges platform
- Key issue: platform could discharge due to poor weather conditions, requiring AUV to dock for long periods.

Behavior coordination needed

- Is there an optimal scheduling and coordination of underwater, surface, and space assets?
- Figure shows discrete event simulation of system-of-system over 48-hour mission cycle.
- t = 0: AUV fully charged (1.9 kWh) and batteries deplete at a rate of about 200W. PEARL fully charged (8000 Wh).
- t = 8 hours: AUV reaches maximum depth of battery discharge (300 Wh) and docks with PEARL. AUV charges at rate of 300W. Since it's night, PEARL battery charge decreases at same rate.
- t = 12 hours: sun rises and discharge of the PEARL battery flattens out since the sun starts recharging PEARL via its built-in solar panels.
- t = 14: AUV full charged and undocks. PEARL
 battery charge increases since it is daytime
 (assuming no cloud cover) and there is no load.
- Simulation predicts 4 dives of 6 hours each during the 48-hour period → a productivity of about 50%.

Continued and Future Work

- Fabrication, and assembly of prototype complete.
- Pool testing of flotation and manual motor control complete.
- Ocean test of platform to begin 10/17/2020.
- Sensors onboard PEARL allow monitoring of ambient light intensity, solar energy harvested, battery charging/discharging, and load power draw.
- Ocean trials of prototype will seek to validate model that predicts energy state of PEARL and a paired AUV given ambient light intensity, characteristics of solar PV cells, and load.

Images of prototype fabrication and pool testing.

Acknowledgments

Thank you to all the undergraduate research assistants to have helped make this work possible: Ari Grayzel, Ethan Rolland, Juliana Silldorff, Jimmy Tran and Luke Woodcock!

This project was funded by a seed grant from the MIT-Portugal program, in collaboration with the Valispace company.

MITPortugal VALISPACE

