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We need energy.
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But energy comes at an environmental cost.
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Climate change a key 
issue for our generation
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This means we need decarbonize
sectors that are... difficult to 
decarbonize. 
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Net-zero emissions energy systems
Steven J. Davis1,2, Nathan S. Lewis3, Matthew Shaner4, Sonia Aggarwal5, Doug Arent6,7,
Inês L. Azevedo8, Sally M. Benson9,10,11, Thomas Bradley12, Jack Brouwer13,14,
Yet-Ming Chiang15, Christopher T. M. Clack16, Armond Cohen17, Stephen Doig18,
Jae Edmonds19, Paul Fennell20,21, Christopher B. Field22, Bryan Hannegan23,
Bri-Mathias Hodge6,24,25, Martin I. Hoffert26, Eric Ingersoll27, Paulina Jaramillo8,
Klaus S. Lackner28, Katharine J. Mach29, Michael Mastrandrea4, Joan Ogden30,
Per F. Peterson31, Daniel L. Sanchez32, Daniel Sperling33, Joseph Stagner34,
Jessika E. Trancik35,36, Chi-Jen Yang37, Ken Caldeira32

Some energy services and industrial processes—such as long-distance freight transport,
air travel, highly reliable electricity, and steel and cement manufacturing—are particularly
difficult to provide without adding carbon dioxide (CO2) to the atmosphere. Rapidly
growing demand for these services, combined with long lead times for technology
development and long lifetimes of energy infrastructure, make decarbonization of these
services both essential and urgent.We examine barriers and opportunities associated with
these difficult-to-decarbonize services and processes, including possible technological
solutions and research and development priorities. A range of existing technologies could
meet future demands for these services and processes without net addition of CO2 to
the atmosphere, but their use may depend on a combination of cost reductions via
research and innovation, as well as coordinated deployment and integration of operations
across currently discrete energy industries.

P
eople do not want energy itself, but rather
the services that energy provides and the
products that rely on these services. Even
with substantial improvements inefficiency,
global demand for energy is projected to

increase markedly over this century (1). Mean-
while, net emissions of carbondioxide (CO2) from
human activities—including not only energy
and industrial production, but also land use and
agriculture—must approach zero to stabilize glo-
bal mean temperature (2, 3). Indeed, interna-
tional climate targets, such as avoiding more
than 2°C of mean warming, are likely to require
an energy systemwith net-zero (or net-negative)
emissions later this century (F1 Fig. 1) (3).
Energy services such as light-duty transpor-

tation, heating, cooling, and lighting may be
relatively straightforward to decarbonize by
electrifying and generating electricity from var-
iable renewable energy sources (such as wind
and solar) and dispatchable (“on-demand”) non-

renewable sources (including nuclear energy
and fossil fuels with carbon capture and storage).
However, other energy services essential to mo-
dern civilization entail emissions that are likely
to be more difficult to fully eliminate. These
difficult-to-decarbonize energy services include
aviation, long-distance transport, and shipping;
production of carbon-intensive structural materi-
als such as steel and cement; and provision of
a reliable electricity supply that meets varying
demand. To the extent that carbon remains in-
volved in these services in the future, net-zero
emissions will also entail active management
of carbon.
In 2014, difficult-to-eliminate emissions related

to aviation, long-distance transportation, and
shipping; structuralmaterials; andhighly reliable
electricity totaled ~9.2 Gt CO2, or 27% of global
CO2 emissions from all fossil fuel and industrial
sources (F2 Fig. 2). Yet despite their importance,
detailed representation of these services in in-

tegrated assessment models remains challeng-
ing (4–6).
Here, we review the special challenges asso-

ciated with an energy system that does not add
any CO2 to the atmosphere (a net-zero emission
energy system). We discuss prominent techno-
logical opportunities and barriers for eliminat-
ing and/or managing emissions related to the
difficult-to-decarbonize services; pitfalls in which
near-term actions may make it more difficult or
costly to achieve the net-zero emissions goal;
and critical areas for research, development,
demonstration, and deployment. Our scope is
not comprehensive; we focus on what now seem
the most promising technologies and pathways.
Our assertions regarding feasibility throughout
are not the result of formal, quantitative econo-
mic modeling; rather, they are based on compar-
ison of current and projected costs, with stated
assumptions about progress and policy.
A major conclusion is that it is vital to integrate

currently discrete energy sectors and industrial
processes. This integration may entail infrastruc-
tural and institutional transformations, as well as
active management of carbon in the energy system.

Aviation, long-distance transport,
and shipping

In 2014, medium- and heavy-duty trucks with
mean trip distances of >160 km (>100 miles)
accounted for ~270 Mt CO2 emissions, or 0.8%
of global CO2 emissions from fossil fuel com-
bustion and industry sources [estimated by
using (7–9)]. Similarly long trips in light-duty
vehicles accounted for an additional 40 Mt CO2,
and aviation and other shipping modes (such
as trains and ships) emitted 830 and 1060 Mt
CO2, respectively. Altogether, these sources were
responsible for ~6% of global CO2 emissions
(Fig. 2). Meanwhile, both global energy demand
for transportation and the ratio of heavy- to
light-duty vehicles is expected to increase (9).
Light-duty vehicles can be electrified or run

on hydrogen without drastic changes in perfor-
mance except for range and/or refueling time.
By contrast, general-use air transportation and
long-distance transportation, especially by trucks
or ships, have additional constraints of revenue
cargo space and payload capacity that mandate
energy sources with high volumetric and grav-
imetric density (10). Closed-cycle electrochemical
batteries must contain all of their reactants and
products. Hence, fuels that are oxidized with
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(NaOH)] together with metal catalysts to pro-
duce hydrogen at an efficiency of 50 to 60% and
a cost of ~U.S. $5.50/kg H2 (assuming industrial
electricity costs of U.S. $0.07/kWh and 75% uti-
lization rates) (29, 30). At this cost of hydrogen,
the minimum price of synthesized hydrocarbons
would be $1.70 to $1.50/liter of diesel equivalent
[or $5.50 to $6.50/gallon and $42 to $50 per GJ,
assuming carbon feedstock costs of $0 to 100 per
ton of CO2 and very low process costs of $0.05/
liter or $1.50 per GJ (28)]. For comparison, H2

from steam reforming of fossil CH4 into CO2 and
H2 currently costs $1.30 to 1.50 per kg (Fig. 3D,
red line) (29, 31). Thus, the feasibility of syn-
thesizing hydrocarbons from electrolytic H2 may
depend on demonstrating valuable cross-sector
benefits, such as balancing variability of renew-
able electricity generation, or else a policy-imposed
price of ~$400 per ton of CO2 emitted (which
would also raise fossil diesel prices by ~$1.00/liter
or ~$4.00/gallon).
In the absence of policies or cross-sector coor-

dination, hydrogen costs of $2.00/kg (approaching
the cost of fossil-derived hydrogen and synthe-
sized diesel of ~$0.79/liter or $3.00/gallon) could
be achieved, for example, if electricity costs were
$0.03/kWh and current electrolyzer costs were
reduced by 60 to 80% (Fig. 3B) (29). Such reduc-
tions may be possible (32) but may require central-
ized electrolysis (33) by using less mature but
promising technologies, such as high-temperature
solid oxide or molten carbonate fuel cells, or
thermochemical water splitting (30, 34). Fuel
markets are vastly more flexible than instan-
taneously balanced electricity markets because

of the relative simplicity of large, long-term
storage of chemical fuels. Hence, using emissions-
free electricity to make fuels represents a critical
opportunity for integrating electricity and trans-
portation systems in order to supply a persistent
demand for carbon-neutral fuels while boosting
utilization rates of system assets.

Direct solar fuels

Photoelectrochemical cells or particulate/molecular
photocatalysts directly split water by using sunlight
to produce fuel through artificial photosynthesis,
without the land-use constraints associated with
biomass (35). Hydrogen production efficiencies
can be high, but costs, capacity factors, and life-
times need to be improved in order to obtain an
integrated, cost-advantaged approach to carbon-
neutral fuel production (36). Short-lived labora-
tory demonstrations have also produced liquid
carbon-containing fuels by using concentrated
CO2 streams (Fig. 1H) (37), in some cases by
using bacteria as catalysts.

Outlook

Large-scale production of carbon-neutral and
energy-dense liquid fuels may be critical to achiev-
ing a net-zero emissions energy system. Such fuels
could provide a highly advantageous bridge be-
tween the stationary and transportation energy pro-
duction sectors and may therefore deserve special
priority in energy research and development efforts.

Structural materials

Economic development and industrialization
are historically linked to the construction of in-

frastructure. Between 2000 and 2015, cement and
steel use persistently averaged 50 and 21 tons per
million dollars of global GDP, respectively (~1 kg
per person per day in developed countries) (4).
Globally, ~1320 and 1740 Mt CO2 emissions em-
anated from chemical reactions involved with the
manufacture of cement and steel, respectively
(Fig. 2) (8, 38, 39); altogether, this equates to
~9% of global CO2 emissions in 2014 (Fig. 1,
purple and blue). Although materials intensity
of construction could be substantially reduced
(40, 41), steel demand is projected to grow by 3.3%
per year to 2.4 billion tons in 2025 (42), and ce-
ment production is projected to grow by 0.8 to
1.2% per year to 3.7 billion to 4.4 billion tons in
2050 (43, 44), continuing historical patterns of
infrastructure accumulation andmaterials use seen
in regions such as China, India, and Africa (4).
Decarbonizing the provision of cement and

steel will require major changes in manufac-
turing processes, use of alternative materials
that do not emit CO2 during manufacture, or
carbon capture and storage (CCS) technologies
to minimize the release of process-related CO2

to the atmosphere (Fig. 1B) (45).

Steel

During steel making, carbon (coke from coking
coal) is used to reduce iron oxide ore in blast
furnaces, producing 1.6 to 3.1 tons of process
CO2 per ton of crude steel produced (39). This
is in addition to CO2 emissions from fossil fuels
burned to generate the necessary high temper-
atures (1100 to 1500°C). Reductions in CO2 emis-
sions per ton of crude steel are possible through

Davis et al., Science 360, eaas9793 (2018) 29 June 2018 4 of 9

Fig. 2. Difficult-to-eliminate
emissions in current context.
(A and B) Estimates of CO2

emissions related to different
energy services, highlighting
[for example, by longer pie
pieces in (A)] those services
that will be the most difficult
to decarbonize, and the
magnitude of 2014 emissions
from those difficult-to-
eliminate emissions.The
shares and emissions shown
here reflect a global energy
system that still relies
primarily on fossil fuels and
that serves many developing
regions. Both (A) the shares
and (B) the level of emissions
related to these difficult-to-
decarbonize services are
likely to increase in the future.
Totals and sectoral break-
downs shown are based
primarily on data from the
International Energy Agency
and EDGAR 4.3 databases
(8, 38).The highlighted iron and steel and cement emissions are those related to the dominant industrial processes only; fossil-energy inputs to those sectors that aremore
easily decarbonized are included with direct emissions from other industries in the “Other industry” category. Residential and commercial emissions are those produced
directly by businesses andhouseholds, and “Electricity,” “Combinedheat& electricity,”and “Heat” represent emissions from the energy sector. Furtherdetails are provided in
the supplementary materials.
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ambient air and then vent their exhaust to the
atmosphere have a substantial chemical advan-
tage in gravimetric energy density.
Battery- and hydrogen-powered trucks are now

used in short-distance trucking (11), but at equal

range, heavy-duty trucks powered by current
lithium-ion batteries and electric motors can car-
ry ~40% fewer goods than can trucks powered
by diesel-fueled, internal combustion engines.
The same physical constraints of gravimetric

and volumetric energy density likely preclude
battery- or hydrogen-powered aircraft for long-
distance cargo or passenger service (12). Auto-
nomous trucks and distributed manufacturing
may fundamentally alter the energy demands of

Davis et al., Science 360, eaas9793 (2018) 29 June 2018 2 of 9

Fig. 1. Schematic of an integrated system that can provide essential energy services without adding any CO2 to the atmosphere.
(A to S) Colors indicate the dominant role of specific technologies and processes. Green, electricity generation and transmission; blue, hydrogen
production and transport; purple, hydrocarbon production and transport; orange, ammonia production and transport; red, carbon management;
and black, end uses of energy and materials.
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Energy comes at an environmental cost. 
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Fossil Energy Use
Health damages 

from air 
pollution



Air pollution causes premature mortality

• Fine particulate matter (PM2.5) is the largest environmental 
global health risk, responsible for about 5 million deaths 
annually.

• PM2.5 is associated with increased mortality rates from 
cardiovascular disease (ischemic heart disease and stroke), 
chronic obstructive pulmonary disease, and lung cancer.

• Fuel combustion emits PM2.5 directly (primary PM2.5) as well as 
sulfur dioxide (SO2) and oxides of Nitrogen (NOx), which can 
react with ammonia (NH3) in the atmosphere to form PM2.5

(secondary PM2.5).
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The burden of the environmental cost is not 
uniformly distributed

11Apte et al., 2015



Questions
• How have the effects from air 
pollution from economic activities 
changed over time in the United 
States? 

• How do do the health damages 
from air pollution compare to the 
value added by economic 
activities? 



- Emissions: primarily 
SO2 and NOx

- Wide dispersion

- Emissions: SO2, other 
hazardous pollutants

- Medium wide dispersion

- Emissions: primarily NOx, 
primary particulate matter

- Release at ground level

- Emissions: NOx, primary 
particulate matter, VOCs

- Release at ground level



Computing Marginal Damages with IAMs

emissions

∆ in PM2.5 
concentration

∆ in premature 
deaths

∆ social cost

1. Air quality simulation

2. Dose-response function
3. Population exposed to PM2.5

4. VSL 



Key results: National Trends

• Nationwide GED attributable to production within 
economic sectors has decreased by 22% from 
$1,010 billion to $790 billion ($2018) from 2008 to 
2014.

• These damages comprised 5.9% of GDP in 2008, 
4.6% in 2011, and 4.2% in 2014. 

• Hence, through 2014, the US economy continues on 
its path to become less pollution intensive. 



Crucial for future pollution control efforts is the fact that 
nearly 75% of attributable GED occurs in just 4 sectors 
of the economy: agriculture, utilities, manufacturing, 
and transportation. 



Sensitivity and uncertainty analysis. Previous work with IAMs for fine
particulate matter reports that marginal damages are most sen-
sitive to the parameters chosen for the value of mortality risk
(VMR; commonly referred to as the value of a statistical life (17,
18)) and the dose–response (DR) function for adult mortality
selected from the epidemiological literature (19). As an alter-
native, we report here GED calculations for 2014 with the DR
function provided by the most recent published estimate from the
Harvard Six Cities cohort study (4). This is the most commonly
used alternative DR function in the literature (20). For 2014, our
estimates for economy-wide attributable GED more than double
(an increase of 106%) from $790 billion to $1,600 billion in 2018
prices. SI Appendix, Table S6 contains various combinations of
different DR functions and VMR for 2014.

Model Comparison. In addition to the sensitivity analysis focusing
on the aforementioned parameters, we also explore model un-
certainty. As alternatives to AP3, we use EASIUR and InMAP
(12, 13). All 3 models differ significantly in the methods they
employ to derive marginal damages from emissions of PM2.5 and
its precursors. Whereas AP3 uses source–receptor matrices that
are derived from Gaussian dispersion modeling, EASIUR com-
putes marginal damages based on regressions fit to output from
Comprehensive Air Quality Model with Extensions (CAMx)
(21), a computationally intense chemical transport model. InMAP,
on the other hand, is essentially a temporally averaged chemical
transport model with parameters derived from a more traditional
chemical transport model, Weather Research Forecasting model
coupled with Chemistry (WRF-Chem) (22).
For this comparison, we use the same model DR function and

VMR across all 3 models. Since EASIUR and InMAP are calibrated
to 2005, we adjusted the marginal damages for changes to population
and mortality rates as suggested by the authors of each model, yet we
multiply the marginal damages with the same emission inputs for
the 3 NEI years. Aside from these caveats, the differences we report
stem from the underlying air quality models themselves.
A recent review of these models (23) reports that the national

emission-weighted averages of marginal damages computed with
the 3 IAMs vary by less than 30%. Nonetheless, there do exist
considerable regional differences for the precursor pollutants
NOx and sulfur dioxide (SO2) (23). Table 2 reports damages and
GED/VA ratios from the top 4 sectors across the 3 IAMs. In SI
Appendix, we provide maps and further summary statistics on
regional and emission-weighted differences of marginal damages
across the 3 models.

The largest differences in GED/VA ratios manifest in sectors
where NOx and SO2 are the predominant contributor to GED:
transportation and utilities (Fig. 2). Both transportation and utility
damages are highest in the AP3 model, at $120 and $150 billion,
respectively. For the economy as a whole, damages computed with
EASIUR and InMAP are ∼30 to 40% lower than in AP3.
The 3 IAMs differ in how dispersion and atmospheric chem-

istry are modeled. The spatial implications of these differences,
both from individual sources and from particular sectors, is an
important area for future research. We cannot resolve this source
of the disparities in model predictions because the extent of
published research on such model comparisons only encompasses
marginal damages (5). Nonetheless, our work is illustrative in that
it highlights the differences in GED estimates from the models,
and we attempt to shed light on these divergences by providing
maps to visualize regional differences in marginal damages esti-
mated by each model in SI Appendix. In addition, our multimodel
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Fig. 3. GED versus VA for 2008, 2011, and 2014 for select subsectors in $2018
billion. The dividing line signifies a ratio of 1 between damages and VA.

Fig. 2. GED (in $2018) attributable to economic sectors and their respective precursor pollutants (NH3, NOx, primary PM2.5 , SO2, and VOCs). GED was cal-
culated for the 3 most recent NEI years: 2008, 2011, and 2014.
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Each of these 4 major contributors to GED exhibit falling damages over 
this time period. 

Utility sector GED fell by more than 50% over this 6-year time period.
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Utility emissions and GED are dominated by SO2 from coal-fired 
power plants, but the addition of air pollution control 
technologies, recent closures of coal plants and fuel-switching 
to natural gas have drastically reduced damages from that 
sector. 
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both from individual sources and from particular sectors, is an
important area for future research. We cannot resolve this source
of the disparities in model predictions because the extent of
published research on such model comparisons only encompasses
marginal damages (5). Nonetheless, our work is illustrative in that
it highlights the differences in GED estimates from the models,
and we attempt to shed light on these divergences by providing
maps to visualize regional differences in marginal damages esti-
mated by each model in SI Appendix. In addition, our multimodel
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Fig. 3. GED versus VA for 2008, 2011, and 2014 for select subsectors in $2018
billion. The dividing line signifies a ratio of 1 between damages and VA.

Fig. 2. GED (in $2018) attributable to economic sectors and their respective precursor pollutants (NH3, NOx, primary PM2.5 , SO2, and VOCs). GED was cal-
culated for the 3 most recent NEI years: 2008, 2011, and 2014.
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Agriculture is the economic sector that generates the largest sectoral gross 
external damages in the US economy.

Emissions in Ag are caused primarily by livestock emissions and fertilizer 
application (NH3), and field burning, as well as combustion emissions from 
agricultural equipment and other crop-related activities (primary PM2.5). 



Sensitivity and uncertainty analysis. Previous work with IAMs for fine
particulate matter reports that marginal damages are most sen-
sitive to the parameters chosen for the value of mortality risk
(VMR; commonly referred to as the value of a statistical life (17,
18)) and the dose–response (DR) function for adult mortality
selected from the epidemiological literature (19). As an alter-
native, we report here GED calculations for 2014 with the DR
function provided by the most recent published estimate from the
Harvard Six Cities cohort study (4). This is the most commonly
used alternative DR function in the literature (20). For 2014, our
estimates for economy-wide attributable GED more than double
(an increase of 106%) from $790 billion to $1,600 billion in 2018
prices. SI Appendix, Table S6 contains various combinations of
different DR functions and VMR for 2014.

Model Comparison. In addition to the sensitivity analysis focusing
on the aforementioned parameters, we also explore model un-
certainty. As alternatives to AP3, we use EASIUR and InMAP
(12, 13). All 3 models differ significantly in the methods they
employ to derive marginal damages from emissions of PM2.5 and
its precursors. Whereas AP3 uses source–receptor matrices that
are derived from Gaussian dispersion modeling, EASIUR com-
putes marginal damages based on regressions fit to output from
Comprehensive Air Quality Model with Extensions (CAMx)
(21), a computationally intense chemical transport model. InMAP,
on the other hand, is essentially a temporally averaged chemical
transport model with parameters derived from a more traditional
chemical transport model, Weather Research Forecasting model
coupled with Chemistry (WRF-Chem) (22).
For this comparison, we use the same model DR function and

VMR across all 3 models. Since EASIUR and InMAP are calibrated
to 2005, we adjusted the marginal damages for changes to population
and mortality rates as suggested by the authors of each model, yet we
multiply the marginal damages with the same emission inputs for
the 3 NEI years. Aside from these caveats, the differences we report
stem from the underlying air quality models themselves.
A recent review of these models (23) reports that the national

emission-weighted averages of marginal damages computed with
the 3 IAMs vary by less than 30%. Nonetheless, there do exist
considerable regional differences for the precursor pollutants
NOx and sulfur dioxide (SO2) (23). Table 2 reports damages and
GED/VA ratios from the top 4 sectors across the 3 IAMs. In SI
Appendix, we provide maps and further summary statistics on
regional and emission-weighted differences of marginal damages
across the 3 models.

The largest differences in GED/VA ratios manifest in sectors
where NOx and SO2 are the predominant contributor to GED:
transportation and utilities (Fig. 2). Both transportation and utility
damages are highest in the AP3 model, at $120 and $150 billion,
respectively. For the economy as a whole, damages computed with
EASIUR and InMAP are ∼30 to 40% lower than in AP3.
The 3 IAMs differ in how dispersion and atmospheric chem-

istry are modeled. The spatial implications of these differences,
both from individual sources and from particular sectors, is an
important area for future research. We cannot resolve this source
of the disparities in model predictions because the extent of
published research on such model comparisons only encompasses
marginal damages (5). Nonetheless, our work is illustrative in that
it highlights the differences in GED estimates from the models,
and we attempt to shed light on these divergences by providing
maps to visualize regional differences in marginal damages esti-
mated by each model in SI Appendix. In addition, our multimodel
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Fig. 3. GED versus VA for 2008, 2011, and 2014 for select subsectors in $2018
billion. The dividing line signifies a ratio of 1 between damages and VA.

Fig. 2. GED (in $2018) attributable to economic sectors and their respective precursor pollutants (NH3, NOx, primary PM2.5 , SO2, and VOCs). GED was cal-
culated for the 3 most recent NEI years: 2008, 2011, and 2014.

Tschofen et al. PNAS Latest Articles | 3 of 6

EN
VI
RO

N
M
EN

TA
L

SC
IE
N
CE

S
EC

O
N
O
M
IC

SC
IE
N
CE

S

“All Others” represented the remaining 16 sectors of the 
economy altogether. Here, primary PM2.5 is the predominant 
contributor to GED (a large portion of that occurs in the 
construction subsector). 



Sensitivity and uncertainty analysis. Previous work with IAMs for fine
particulate matter reports that marginal damages are most sen-
sitive to the parameters chosen for the value of mortality risk
(VMR; commonly referred to as the value of a statistical life (17,
18)) and the dose–response (DR) function for adult mortality
selected from the epidemiological literature (19). As an alter-
native, we report here GED calculations for 2014 with the DR
function provided by the most recent published estimate from the
Harvard Six Cities cohort study (4). This is the most commonly
used alternative DR function in the literature (20). For 2014, our
estimates for economy-wide attributable GED more than double
(an increase of 106%) from $790 billion to $1,600 billion in 2018
prices. SI Appendix, Table S6 contains various combinations of
different DR functions and VMR for 2014.

Model Comparison. In addition to the sensitivity analysis focusing
on the aforementioned parameters, we also explore model un-
certainty. As alternatives to AP3, we use EASIUR and InMAP
(12, 13). All 3 models differ significantly in the methods they
employ to derive marginal damages from emissions of PM2.5 and
its precursors. Whereas AP3 uses source–receptor matrices that
are derived from Gaussian dispersion modeling, EASIUR com-
putes marginal damages based on regressions fit to output from
Comprehensive Air Quality Model with Extensions (CAMx)
(21), a computationally intense chemical transport model. InMAP,
on the other hand, is essentially a temporally averaged chemical
transport model with parameters derived from a more traditional
chemical transport model, Weather Research Forecasting model
coupled with Chemistry (WRF-Chem) (22).
For this comparison, we use the same model DR function and

VMR across all 3 models. Since EASIUR and InMAP are calibrated
to 2005, we adjusted the marginal damages for changes to population
and mortality rates as suggested by the authors of each model, yet we
multiply the marginal damages with the same emission inputs for
the 3 NEI years. Aside from these caveats, the differences we report
stem from the underlying air quality models themselves.
A recent review of these models (23) reports that the national

emission-weighted averages of marginal damages computed with
the 3 IAMs vary by less than 30%. Nonetheless, there do exist
considerable regional differences for the precursor pollutants
NOx and sulfur dioxide (SO2) (23). Table 2 reports damages and
GED/VA ratios from the top 4 sectors across the 3 IAMs. In SI
Appendix, we provide maps and further summary statistics on
regional and emission-weighted differences of marginal damages
across the 3 models.

The largest differences in GED/VA ratios manifest in sectors
where NOx and SO2 are the predominant contributor to GED:
transportation and utilities (Fig. 2). Both transportation and utility
damages are highest in the AP3 model, at $120 and $150 billion,
respectively. For the economy as a whole, damages computed with
EASIUR and InMAP are ∼30 to 40% lower than in AP3.
The 3 IAMs differ in how dispersion and atmospheric chem-

istry are modeled. The spatial implications of these differences,
both from individual sources and from particular sectors, is an
important area for future research. We cannot resolve this source
of the disparities in model predictions because the extent of
published research on such model comparisons only encompasses
marginal damages (5). Nonetheless, our work is illustrative in that
it highlights the differences in GED estimates from the models,
and we attempt to shed light on these divergences by providing
maps to visualize regional differences in marginal damages esti-
mated by each model in SI Appendix. In addition, our multimodel
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Fig. 3. GED versus VA for 2008, 2011, and 2014 for select subsectors in $2018
billion. The dividing line signifies a ratio of 1 between damages and VA.

Fig. 2. GED (in $2018) attributable to economic sectors and their respective precursor pollutants (NH3, NOx, primary PM2.5 , SO2, and VOCs). GED was cal-
culated for the 3 most recent NEI years: 2008, 2011, and 2014.
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Subsectors are displayed if they showed either GED of $30 billion or higher (the exception for this is “other services, except 
government,” which includes emissions attributed to private households), a GED/VA ratio of 0.4 or higher, or both. 



Sensitivity and uncertainty analysis. Previous work with IAMs for fine
particulate matter reports that marginal damages are most sen-
sitive to the parameters chosen for the value of mortality risk
(VMR; commonly referred to as the value of a statistical life (17,
18)) and the dose–response (DR) function for adult mortality
selected from the epidemiological literature (19). As an alter-
native, we report here GED calculations for 2014 with the DR
function provided by the most recent published estimate from the
Harvard Six Cities cohort study (4). This is the most commonly
used alternative DR function in the literature (20). For 2014, our
estimates for economy-wide attributable GED more than double
(an increase of 106%) from $790 billion to $1,600 billion in 2018
prices. SI Appendix, Table S6 contains various combinations of
different DR functions and VMR for 2014.

Model Comparison. In addition to the sensitivity analysis focusing
on the aforementioned parameters, we also explore model un-
certainty. As alternatives to AP3, we use EASIUR and InMAP
(12, 13). All 3 models differ significantly in the methods they
employ to derive marginal damages from emissions of PM2.5 and
its precursors. Whereas AP3 uses source–receptor matrices that
are derived from Gaussian dispersion modeling, EASIUR com-
putes marginal damages based on regressions fit to output from
Comprehensive Air Quality Model with Extensions (CAMx)
(21), a computationally intense chemical transport model. InMAP,
on the other hand, is essentially a temporally averaged chemical
transport model with parameters derived from a more traditional
chemical transport model, Weather Research Forecasting model
coupled with Chemistry (WRF-Chem) (22).
For this comparison, we use the same model DR function and

VMR across all 3 models. Since EASIUR and InMAP are calibrated
to 2005, we adjusted the marginal damages for changes to population
and mortality rates as suggested by the authors of each model, yet we
multiply the marginal damages with the same emission inputs for
the 3 NEI years. Aside from these caveats, the differences we report
stem from the underlying air quality models themselves.
A recent review of these models (23) reports that the national

emission-weighted averages of marginal damages computed with
the 3 IAMs vary by less than 30%. Nonetheless, there do exist
considerable regional differences for the precursor pollutants
NOx and sulfur dioxide (SO2) (23). Table 2 reports damages and
GED/VA ratios from the top 4 sectors across the 3 IAMs. In SI
Appendix, we provide maps and further summary statistics on
regional and emission-weighted differences of marginal damages
across the 3 models.

The largest differences in GED/VA ratios manifest in sectors
where NOx and SO2 are the predominant contributor to GED:
transportation and utilities (Fig. 2). Both transportation and utility
damages are highest in the AP3 model, at $120 and $150 billion,
respectively. For the economy as a whole, damages computed with
EASIUR and InMAP are ∼30 to 40% lower than in AP3.
The 3 IAMs differ in how dispersion and atmospheric chem-

istry are modeled. The spatial implications of these differences,
both from individual sources and from particular sectors, is an
important area for future research. We cannot resolve this source
of the disparities in model predictions because the extent of
published research on such model comparisons only encompasses
marginal damages (5). Nonetheless, our work is illustrative in that
it highlights the differences in GED estimates from the models,
and we attempt to shed light on these divergences by providing
maps to visualize regional differences in marginal damages esti-
mated by each model in SI Appendix. In addition, our multimodel
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Fig. 2. GED (in $2018) attributable to economic sectors and their respective precursor pollutants (NH3, NOx, primary PM2.5 , SO2, and VOCs). GED was cal-
culated for the 3 most recent NEI years: 2008, 2011, and 2014.
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What are the distributional effects from air 
pollution from electricity? 

1 Fine Particulate Air Pollution from Electricity Generation in the US:
2 Health Impacts by Race, Income, and Geography
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8 ABSTRACT: Electricity generation is a large contributor to fine
9 particulate matter (PM2.5) air pollution. However, the demographic
10 distribution of its resulting exposure is largely unknown. We
11 estimate exposures to and health impacts of PM2.5 from electricity
12 generation in the US, for each of the seven Regional Transmission
13 Organizations (RTOs), for each US state, by income and by race.
14 We find that average exposures are the highest for the Blacks,
15 followed by Non-Latino Whites. Exposures for remaining groups
16 (e.g., Asians, Native Americans, and Latinos) are somewhat lower.
17 Disparities by race/ethnicity are observed for each income category,
18 indicating that the racial/ethnic differences hold even after
19 accounting for differences in income. Levels of disparity differ by
20 state and RTO. Exposures are higher for lower-income than for higher-income, but disparities are larger by race than by income.
21 Geographically, we observe large differences between where electricity is generated and where people experience the resulting
22 PM2.5 health consequences; some states are net exporters of health impacts, other are net importers. For 36 US states, most of
23 the health impacts are attributable to emissions in other states. Most of the total impacts are attributable to coal rather than
24 other fuels.

1. INTRODUCTION
25 Fine particulate matter (PM2.5) is the largest environmental
26 health risk in the United States (US) and globally.1,2 PM2.5 is
27 associated with increased mortality rates from cardiovascular
28 disease (ischemic heart disease and stroke), chronic
29 obstructive pulmonary disease, and lung cancer.3−6

30 Fuel combustion emits PM2.5 directly (“primary PM2.5”) as
31 well as sulfur dioxide (SO2) and oxides of nitrogen (NOx),
32 which can react with ammonia (NH3) in the atmosphere to
33 form PM2.5 (“secondary PM2.5”).

7 The US Environmental
34 Protection Agency (US EPA) estimates that in 2014, electricity
35 generating units (EGUs) contributed 67% of SO2, 13% of
36 NOx, and 3% of primary PM2.5 emissions nationwide.8 In 2014,
37 coal-fired EGUs generated ∼39% of the electricity in the US
38 and contributed to 97, 86, and 81%, respectively, of SO2, NOx,
39 and PM2.5 total electricity emissions.8 Although the health
40 damages associated with these emissions continue to be
41 important, EGU emissions have declined in recent decades8,9

42 owing to environmental regulations10 and a transition from
43 coal to natural gas driven largely by market prices.
44 Existing estimates of annual PM2.5-related mortality from
45 EGUs in the US include the following: (i) for year 2005:
46 52 000 (Caiazzo et al. 2013),11 41 500 (Dedoussi et al.
47 2014),12 19 000 (Penn et al. 2017),13 38 000 (Fann et al.
48 2013);14 (ii) for year 2010: 17 050 (Lelieveld et al. 2015);15

49 (iii) for year 2014: 10 400 (Tessum et al. 2019);16 and (iv) for

50year 2016 projected emissions: 17 000 (Fann et al. 2013).14

51Levy et al. (2009)17 modeled the monetized damages
52associated with 407 coal-fired power plants in the United
53States. Buonocore et al. (2014)18 estimated monetized health
54impacts of PM2.5 from individual power plants and normalized
55to “per-ton emitted” using the Community Multiscale Air
56Quality (CMAQ) Model. Penn et al. (2017)13 also quantified
57impacts from EGUs by state, finding 21 000 premature
58mortalities per year from EGU emissions (PM2.5 and Ozone
59[O3]). Mortality estimates vary among studies owing to
60differences in methods, models, concentration−response
61functions, and years considered (total EGU emissions are
62decreasing over time).
63The consideration of how exposure to air pollution differs by
64the demographic group is relevant to environmental justice
65(EJ).19 Several studies have estimated health-impact disparities
66for air pollution from various source sectors,20−28 but few
67studies have investigated EJ aspects of electricity generation in
68the US. Studying EGUs in the US, Levy et al. (2007)29

69quantified health benefits and the change in the spatial
70inequality of health risk for potential EGU pollution control
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Results: Premature mortality by race.

299 impacts (∼73%) are from pSO4, which is dominated by sulfur
300 emissions from coal EGUs; contributions by other species
301 (Figure S3) are 15% (pNO3), 11% (primary PM2.5), 1%
302 (pNH4), and ∼0% (SOA).
303 3.2. Differences in Damages by the Demographic
304 Group. 3.2.1. Race. We find that year 2014 mortality rates
305 from EGU-PM2.5 are largest for Black people, second largest
306 for White Non-Latino people, and lower-than-average for

f1 307 Asians, Native Americans, and Latinos (Figure 1). Differences
308 by race vary by RTO (Figure S4) and species (Figure S5).

309 The overall average mortality rates from EGU-PM2.5 are 5.3
310 for all people, 6.6 for Blacks, 5.9 for White Non-Latinos, and
311 3.6 averaged across the remaining groups (Figure 1). We
312 assessed the spatial distribution of EGU-caused premature
313 deaths per km2 across the US by race-ethnicity groups (Figure
314 S6A−C) and find areas where groups have the largest impacts.
315 For example, for Native Americans, the largest premature
316 deaths per km2 are, e.g., in western Oklahoma. Subdividing by
317 fuel-type (Figure S7) reveals that Blacks are the most-exposed
318 group for all three fuel categories. For natural gas emissions,
319 exposures are higher than average for Blacks, Asians, and
320 Latinos and lower than average for White Non-Latinos. For
321 coal emissions, relative exposures are similar to Figure 1 except
322 that Native Americans are slightly more exposed to coal
323 emissions than Asians are.
324 3.2.2. Income and Race. Differences by race are observed

f2 325 across all income categories (Figure 2). Thus, differences by

326race/ethnicity (Figure 1) are not “merely” income differences;
327race/ethnicity differences are present even after accounting for
328differences in income (Figure 2).
329On average, exposures are higher for lower-income house-
330holds than for higher-income households. Considering Figure
3312 (deaths per 100 000 people attributable to EGU-PM2.5), the
332difference between most- and least-exposed income group is
333∼1.0 for the overall population; the same difference is 1.5 for
334White Non-Latino, 0.9 [Black], 0.3 [White Latino], 0.5
335[Asian], 0.9 [Native American], and 0.8 [mixed/other]. The
336difference between most- and least-exposed race is 3.6 for the
337overall population, 4.0 for the lowest-income population, and
3382.8 for the highest-income population. Thus, differences by
339race are larger than differences by income.
340Based on results in Figure 2, if we calculate the risks by race,
341but making the adjustment that all race/ethnicity groups have
342an income distribution equal to the national average
343distribution, then mortality rates from EGU-PM2.5 (deaths
344per 100 000 people) would be 5.3 for all people, 6.4 for Blacks,
3455.9 for White Non-Latinos, and 3.2 averaged across the
346remaining groups. Here too, analyses reveal that exposure
347differences by race are observed even after accounting for
348income differences.
349Race−income results differ substantially by RTO (Figure
350S8), for example, exposures are higher for White Non-Latino
351income groups than for Black income groups for CAISO,
352MISO, NEISO, and SPP but not ERCOT, NYISO, and PJM.
353We estimate exposures for the household income groups in
354 f3each state from EGU-PM2.5 emissions in the entire US; Figure
355 f33 shows the most-exposed income category in each state and
356the risk gap (premature deaths per 100 000 people) between
357most- and least-exposed household income group. The
358“$10 000−$15 000 per year” household income category is
359the most-exposed category for 19 out of 49 states (risk gap
360varies between 0.06 and 3.6 for these 19 states). Overall, low-
361income categories are most exposed in a majority of the states
362[38 states], followed by middle income [5 states] and upper
363income [6 states]. The gap between most- and least-exposed
364household income category is sizeable (>2 premature deaths
365per 100 000 people) in only three states (Maryland [3.5],
366Virginia [3.6], Indiana [2.9]; total population = 21 million).
3673.3. Health Damages by State. Our results estimate
368EGU-PM2.5 health impacts, with each state as a source and a
369 f4receptor of pollution (Figure 4). The maps reveal geographic
370differences between where EGU emissions are produced and
371where exposures and health impacts are experienced. For

Table 1. Estimated Deaths Per Unit Electricity Generation
by RTO

total deaths
attributable to

RTO’s
emissions percent of generation by fuela

RTO

annual net
generation
(TWh)a

total
deaths

deaths
per
TWh

coal
(%)

natural
gas (%)

oil, biomass,
and other
fossil fuels

(%)

CAISO 170 45 0.3 0.5 59 4
ERCOT 365 1788 4.9 32 46 0.7
MISO 691 5649 8.2 56 19 4
NEISO 110 48 0.4 5 43 10
NYISO 140 162 1.2 3 42 4
PJM 809 4868 6.0 43 17 2
SPP 238 1599 6.7 59 19 0.8

aFrom year 2014 in eGRID.30

Figure 1. Deaths per 100 000 people attributable to PM2.5 from
electricity generation in the US in 2014.

Figure 2. Deaths per 100 000 people by income groups among White
Non-Latino, White Latino, Black, Asian, Native Americans, and
mixed/others. The icon area is proportional to the population size.
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Results: Premature mortality by race and 
income. 
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Results: Total, self-, imported and exported 
damages 

372example, Texas experienced an estimated total of ∼1360 EGU-
373PM2.5 premature deaths in 2014 (Figure 4A), most of which
374(∼1160, or >80%) are attributable to EGU emissions
375occurring inside Texas (Figure 4B); the remainder (∼200/
376year deaths in Texas) were attributable to PM2.5 in Texas
377caused by EGU emissions outside of Texas. EGU emissions in
378Texas caused an additional ∼524 deaths/year in states other
379than Texas (Figure 4C). Thus, Texas is a net exporter of EGU-
380PM2.5 deaths: the number of premature deaths per year caused
381by Texas EGU emissions (∼1684; the sum of ∼1160 in-state
382plus ∼524 out-of-state) exceeds the number of EGU-PM2.5
383premature deaths in Texas (∼1360) by ∼325 (Figure 4D). For
384some states (e.g., Arizona), damages from their EGU emissions
385are large in many downwind states; for other states (e.g.,
386Washington), damages are more local (Figure S10A). As
387expected, many of the net importing states are on the East
388Coast (Figure 4D). A bar chart of Figure 4 (Figure S11)
389reveals the comparison between health impacts among
390different states.
391States with the largest EGU-PM2.5 mortality are Pennsylva-
392nia, Texas, Ohio, New York, Indiana, Virginia, Maryland,
393Kentucky, North Carolina, New Jersey, Illinois, and Florida;
394states with the smallest values are New Hampshire, South
395Dakota, Nevada, New Mexico, Maine, Arizona, Utah, North

Figure 3. Most-exposed household income group in thousand US
dollars (for overall population) and risk gap (units: deaths per
100 000 people attributable to EGU-PM2.5 from all EGUs in the US)
between the most- and least-exposed household income group in each
US state. The income group that is the most exposed is shown for
states where the gap in the mortality rate is greater than 1 death per
100 000 people. The remaining states are unlabeled because the gap
between most- and least-exposed income group is small (less than 1
per 100 000 people). A version of the map displaying labels for all
states is shown in Figure S9. Risk gap is shown by color gradation.

Figure 4. Deaths from EGU-PM2.5 by state. (A) Total deaths in each state from EGUs throughout the US, (B) total deaths in-state from EGUs in
that state, (C) total deaths out-of-state from EGUs in that state, (D) net imports (negative values) or exports (positive values) of deaths. Values in
D are calculated as B + C − A. Range limits for color bars in A, B, and C are by quantiles.
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Results: Total, self-, imported and exported 
damages 

372example, Texas experienced an estimated total of ∼1360 EGU-
373PM2.5 premature deaths in 2014 (Figure 4A), most of which
374(∼1160, or >80%) are attributable to EGU emissions
375occurring inside Texas (Figure 4B); the remainder (∼200/
376year deaths in Texas) were attributable to PM2.5 in Texas
377caused by EGU emissions outside of Texas. EGU emissions in
378Texas caused an additional ∼524 deaths/year in states other
379than Texas (Figure 4C). Thus, Texas is a net exporter of EGU-
380PM2.5 deaths: the number of premature deaths per year caused
381by Texas EGU emissions (∼1684; the sum of ∼1160 in-state
382plus ∼524 out-of-state) exceeds the number of EGU-PM2.5
383premature deaths in Texas (∼1360) by ∼325 (Figure 4D). For
384some states (e.g., Arizona), damages from their EGU emissions
385are large in many downwind states; for other states (e.g.,
386Washington), damages are more local (Figure S10A). As
387expected, many of the net importing states are on the East
388Coast (Figure 4D). A bar chart of Figure 4 (Figure S11)
389reveals the comparison between health impacts among
390different states.
391States with the largest EGU-PM2.5 mortality are Pennsylva-
392nia, Texas, Ohio, New York, Indiana, Virginia, Maryland,
393Kentucky, North Carolina, New Jersey, Illinois, and Florida;
394states with the smallest values are New Hampshire, South
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Figure 3. Most-exposed household income group in thousand US
dollars (for overall population) and risk gap (units: deaths per
100 000 people attributable to EGU-PM2.5 from all EGUs in the US)
between the most- and least-exposed household income group in each
US state. The income group that is the most exposed is shown for
states where the gap in the mortality rate is greater than 1 death per
100 000 people. The remaining states are unlabeled because the gap
between most- and least-exposed income group is small (less than 1
per 100 000 people). A version of the map displaying labels for all
states is shown in Figure S9. Risk gap is shown by color gradation.

Figure 4. Deaths from EGU-PM2.5 by state. (A) Total deaths in each state from EGUs throughout the US, (B) total deaths in-state from EGUs in
that state, (C) total deaths out-of-state from EGUs in that state, (D) net imports (negative values) or exports (positive values) of deaths. Values in
D are calculated as B + C − A. Range limits for color bars in A, B, and C are by quantiles.
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372example, Texas experienced an estimated total of ∼1360 EGU-
373PM2.5 premature deaths in 2014 (Figure 4A), most of which
374(∼1160, or >80%) are attributable to EGU emissions
375occurring inside Texas (Figure 4B); the remainder (∼200/
376year deaths in Texas) were attributable to PM2.5 in Texas
377caused by EGU emissions outside of Texas. EGU emissions in
378Texas caused an additional ∼524 deaths/year in states other
379than Texas (Figure 4C). Thus, Texas is a net exporter of EGU-
380PM2.5 deaths: the number of premature deaths per year caused
381by Texas EGU emissions (∼1684; the sum of ∼1160 in-state
382plus ∼524 out-of-state) exceeds the number of EGU-PM2.5
383premature deaths in Texas (∼1360) by ∼325 (Figure 4D). For
384some states (e.g., Arizona), damages from their EGU emissions
385are large in many downwind states; for other states (e.g.,
386Washington), damages are more local (Figure S10A). As
387expected, many of the net importing states are on the East
388Coast (Figure 4D). A bar chart of Figure 4 (Figure S11)
389reveals the comparison between health impacts among
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394states with the smallest values are New Hampshire, South
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dollars (for overall population) and risk gap (units: deaths per
100 000 people attributable to EGU-PM2.5 from all EGUs in the US)
between the most- and least-exposed household income group in each
US state. The income group that is the most exposed is shown for
states where the gap in the mortality rate is greater than 1 death per
100 000 people. The remaining states are unlabeled because the gap
between most- and least-exposed income group is small (less than 1
per 100 000 people). A version of the map displaying labels for all
states is shown in Figure S9. Risk gap is shown by color gradation.

Figure 4. Deaths from EGU-PM2.5 by state. (A) Total deaths in each state from EGUs throughout the US, (B) total deaths in-state from EGUs in
that state, (C) total deaths out-of-state from EGUs in that state, (D) net imports (negative values) or exports (positive values) of deaths. Values in
D are calculated as B + C − A. Range limits for color bars in A, B, and C are by quantiles.
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372example, Texas experienced an estimated total of ∼1360 EGU-
373PM2.5 premature deaths in 2014 (Figure 4A), most of which
374(∼1160, or >80%) are attributable to EGU emissions
375occurring inside Texas (Figure 4B); the remainder (∼200/
376year deaths in Texas) were attributable to PM2.5 in Texas
377caused by EGU emissions outside of Texas. EGU emissions in
378Texas caused an additional ∼524 deaths/year in states other
379than Texas (Figure 4C). Thus, Texas is a net exporter of EGU-
380PM2.5 deaths: the number of premature deaths per year caused
381by Texas EGU emissions (∼1684; the sum of ∼1160 in-state
382plus ∼524 out-of-state) exceeds the number of EGU-PM2.5
383premature deaths in Texas (∼1360) by ∼325 (Figure 4D). For
384some states (e.g., Arizona), damages from their EGU emissions
385are large in many downwind states; for other states (e.g.,
386Washington), damages are more local (Figure S10A). As
387expected, many of the net importing states are on the East
388Coast (Figure 4D). A bar chart of Figure 4 (Figure S11)
389reveals the comparison between health impacts among
390different states.
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393Kentucky, North Carolina, New Jersey, Illinois, and Florida;
394states with the smallest values are New Hampshire, South
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Figure 3. Most-exposed household income group in thousand US
dollars (for overall population) and risk gap (units: deaths per
100 000 people attributable to EGU-PM2.5 from all EGUs in the US)
between the most- and least-exposed household income group in each
US state. The income group that is the most exposed is shown for
states where the gap in the mortality rate is greater than 1 death per
100 000 people. The remaining states are unlabeled because the gap
between most- and least-exposed income group is small (less than 1
per 100 000 people). A version of the map displaying labels for all
states is shown in Figure S9. Risk gap is shown by color gradation.

Figure 4. Deaths from EGU-PM2.5 by state. (A) Total deaths in each state from EGUs throughout the US, (B) total deaths in-state from EGUs in
that state, (C) total deaths out-of-state from EGUs in that state, (D) net imports (negative values) or exports (positive values) of deaths. Values in
D are calculated as B + C − A. Range limits for color bars in A, B, and C are by quantiles.
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